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Estimating Total System Damping for Soil-
Structure Interaction Systems 

Farhang Ostadan,a) Nan Deng,b) and Jose M. Roessetc) 

For a realistic soil-structure interaction (SSI) analysis, material damping in the 

soils and structural materials as well as the foundation radiation damping should 

be considered.  Estimating total system damping is often difficult due to complex 

interplay of material damping and radiation damping in the dynamic solution. In 

practice, however, an estimate of total system damping is frequently needed for 

evaluation of SSI effects and for detailed linear or nonlinear structural analysis in 

order to develop realistic results.  The simple methods typically used to estimate 

structural damping from the dynamic response of the structure often fail to yield 

realistic system damping mainly due to frequency dependency of the foundation 

stiffness and dashpot parameters.  In this paper a summary of series of parametric 

studies is discussed and an effective approach to estimate system damping for SSI 

systems is presented.  The accuracy of the method is verified using a model of a 

large concrete structure on a layered soil site. 

INTRODUCTION 

Regulations for the seismic design of Nuclear Power Plants permit soil-structure 

interaction (SSI) analyses in the frequency domain, with the full effects of radiation damping, 

without any limitations.  The frequency domain solutions are generally more suitable for 

incorporation the damping effects since these solutions incorporate the frequency dependency 

of the foundation stiffness and damping rigorously and can handle the far field boundary 

conditions more accurately.  There are numerous publications reporting the foundation 

stiffness and damping for surface or embedded foundation on uniform halfspace or layered 

sites using the frequency domain approach. 
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On the other hand analyses in the time domain, and particularly modal analysis that 

requires specification of damping for each mode, had limits of 15 % or even 10 % imposed 

on the damping.  Because radiation damping could be significant in some cases, leading at 

times to effective values of damping in the first mode of 20 % or 25 % under horizontal 

excitation and up to 50 % or more in vertical vibration, the results of both types of analyses 

could be very different, with the time domain solution overly conservative.  There was little 

interest or incentive in finding what the effective values of damping implicit in the frequency 

domain approach were or what should be the values of modal damping to be used in the time 

domain models to yield similar results.  Analyses in time and frequency domain cannot 

produce identical results because each one involves different approximations.  One can 

obtain, however, very similar and reasonable results if consistent assumptions are made and 

the values of the different model parameters (frequency independent foundation stiffness, 

damping, etc.) are wisely selected.  To do this it is necessary to look in more detail at the 

effective damping implicit in frequency domain SSI analyses. 

  Currently dynamic non-destructive testing is increasingly used to assess the condition of 

existing structures for health monitoring and damage assessment.  The structure may be 

excited by very small amplitude dynamic loads, by ambient vibrations or by actual 

earthquakes.  Its characteristics are to be determined from the recorded motions at various 

points where sensors are installed.  These characteristics are often expressed in terms of the 

natural frequencies, mode shapes and modal damping values, which may vary in time 

depending on the level of excitation.  The experimental determination of damping values for 

multi-degree of freedom systems without a unique, clearly defined, source of energy 

dissipation represents a problem similar to that encountered when attempting to specify 

modal damping for SSI analyses in the time domain. 

The objectives of this work are to explore the effective values of system damping implicit 

in SSI systems in the frequency domain, to compare the results of different procedures to 

estimate damping from response records, and to compare the results of SSI analyses in the 

frequency domain with those of time domain solutions using realistic parameters.  The 

emphasis is placed on estimating the total system damping for the key dynamic structural 

responses that inherently include the effects of material damping in the system, the radiation 

damping due to the SSI effects recognizing complex contribution of the SSI modes and the 

structural deformation modes in the response.   In this paper first the types of damping and 
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modeling of damping for dynamic analysis are discussed.  Next the simple methods typically 

used to estimate damping from structural responses are discussed.  A series of parametric 

studies are performed and the results are discussed to evaluate the merit of each method to 

estimate total system damping.  From the parametric study, the most effective method is 

identified.  The accuracy of the method is tested by applying it to a lumped parameter SSI 

model to estimate system damping using the time integration method and comparing a key 

response to the complete SSI solution of the problem.  Unless otherwise noted, all computer 

analyses in this paper are using SASSI2000 (Lysmer et. al, 1999) computer program. 

DAMPING AS A MEASURE OF ENEGY DISSIPATION 

Treatment of damping as a means to model energy dissipation starts in structural 

dynamics texts by considering a single degree of freedom system with a viscous dashpot. The 

dashpot has a constant 'c' and a resisting force directly proportional to the rate of deformation 

(the relative velocity of the mass with respect to the base).  This is often referred to as linear 

viscous damping.  One can define a fraction of critical damping β as                                                                   
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where k is the stiffness of the system, m the mass and ω0 the undamped natural frequency of 

the system.  When dealing with this damping the physical constant is the dashpot value 'c'.  

The value of β is not only a property of the dashpot but also depends on the rest of the 

system. It can be easily seen that for a fixed c, defining a dashpot, if both k and m vary 

proportionally, maintaining the natural frequency constant, the fraction of critical damping 

will decrease with increasing k and m; if m is maintained constant and k is varied, changing 

the natural frequency, the value of β will decrease with increasing natural frequency (mass 

proportional damping); if k is kept constant and m varies, changing again the natural 

frequency, β will increase with frequency (stiffness proportional damping). 

It should be noticed that in reality viscous forces (such as drag forces induced by motions 

in a fluid) are often proportional to the velocity raised to a certain power and are therefore 

nonlinear.  More importantly unless one attaches actual viscous dampers at different points of 

the structure, most of the energy dissipation in structures does not occur in the form of linear 

viscous damping.  This model is used primarily because it leads to a linear differential 

equation that can be easily solved analytically.  It is, however, commonly accepted and most 
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engineers tend to think of damping in terms of the fraction of critical damping.  Alternative 

forms are frictional (Coulomb) damping, hysteretic damping associated with nonlinear 

behavior and hysteresis loops in the force displacement relation of the stiffness, and radiation 

damping due to radiation of waves in a continuous medium away from the area of the 

excitation.  A mathematical idealization, without a clear physical model, is the linear 

hysteretic damping D (sometimes referred to as structural or material damping).  It tries to 

simulate the behavior of a hysteretic nonlinear system under steady state vibrations with 

fixed amplitude (the value of the damping would be a function of the amplitude). The linear 

hysteretic damping is defined as 

                                           D= Ed/ (4πEs)       (2) 
 
where Ed is the energy dissipated per cycle (area of the hysteresis loop) and Es is the 

maximum strain energy (assuming an equivalent linear system with the secant stiffness and 

the same amplitude of vibration).  This damping is then included in dynamic analyses (or 

wave propagation studies) in the frequency domain using complex moduli of the form 

E(1+2iD) or G(1+2iD) where E and G are the Young’s and shear modulus of the material.  

This is what is commonly done to model the soil in soil amplification or soil structure 

interaction analyses with most of the available software in the public domain.  The damping 

D is independent of frequency.  Considering instead the cyclic behavior of a system with 

linear viscous damping and the same amplitude of vibration, and applying the above formula 

one would find that in that case   

                                                 D=β ω /ω0       (3) 

where ω is the frequency of the steady state vibration and ω0 is the natural frequency of the 

single degree of freedom viscous system.  This implies that to simulate the effect of viscous 

damping with a linear hysteretic model D would have to increase proportionally with 

frequency and to simulate hysteretic (frequency independent) damping with a linear viscous 

system β would have to decrease with increasing frequency.  Linear hysteretic damping is 

only properly defined in the frequency domain and under steady state vibrations although it is 

used for transient dynamic analyses with the Fourier transform.  Since damping is 

particularly important at or near resonance it is common to make simply D=β. This would 

result in two systems with the same amplitude of response at resonance but different behavior 

at other frequencies. 
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In SSI problems energy is dissipated in the structure through friction and nonlinear 

behavior and in the soil through nonlinear behavior and radiation.  To arrive at an effective 

value of damping for the complete system it is necessary to combine these different 

contributions.  The internal damping in the structure is often assumed to be viscous although 

a hysteretic model would be more realistic.  With viscous damping its contribution to the 

damping of the complete system is multiplied by the ratio of the combined natural frequency 

to that of the structure by itself on a rigid base raised to the cube.  For the hysteretic case the 

factor would be only squared. The internal soil damping is normally considered using linear 

hysteretic damping (complex moduli) with analyses in the frequency domain.  For time 

domain analyses it is common to use Rayleigh damping attempting to maintain it nearly 

constant and close to the desired value over the range of frequencies of interest.  When a 

steady state harmonic load P is applied on top of a rigid mat the resulting displacement will 

reach after a short while a steady state condition. In this range the displacement will have an 

amplitude U and will be out of phase with the applied force by an angle φ (or a time lag τ = 

φ/ω if ω is the frequency of vibration).  It is common to express the foundation stiffness in 

the form 

                                         k= kreal+ i kimag = P/U cosφ +  i P/U sinφ   (4) 

where the ratio P/U and the angle φ are in general functions of the frequency.  By analogy the 

dynamic stiffness of a single degree of freedom system with linear viscous damping would be 

                                                  kdyn= k - m ω2 + i ω c     (5) 

and for a system with hysteretic damping 

                                                   kdyn= k - m ω2 + 2i D k        (6)     

It should be noticed that for the system with linear viscous damping the imaginary part of 

the dynamic stiffness increases proportionally with the frequency of vibration.  The plot of 

imaginary stiffness versus frequency would be a sloping straight line. Dividing it by ω one 

obtains a horizontal line (independent of frequency) with the value of the dashpot constant c.  

For the linear hysteretic system on the other hand the imaginary part is constant and dividing 

it by the frequency one gets a hyperbola with very large values for low frequencies and 

tending to 0 as the frequency increases.  A system with both viscous and hysteretic damping 

would have an imaginary stiffness consisting of the sum of a constant and a sloping line with 

slope c.  Dividing it by ω would yield a hyperbola tending to a constant value c. 
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When applying horizontal harmonic forces to a rigid mat foundation on the surface of an 

elastic half space the real part of the stiffness is essentially constant (it actually has a small 

variation with frequency) and the imaginary part is essentially a straight line.  This implies 

that the foundation can be modeled as a spring and a viscous dashpot. If the soil had some 

internal damping, of a hysteretic nature, the imaginary part of the stiffness would be again the 

sum of a constant and a term linearly proportional to ω and dividing it by ω would result in a 

hyperbola.  The limiting value of the hyperbola as the frequency increases represents the 

radiation damping.  When applying on the other hand a vertical force to the foundation if the 

soil has a Poisson’s ratio of the order of 0.4 or higher the real part of the stiffness looks like a 

second degree parabola with negative curvature suggesting a model with a spring and a mass 

(added mass of soil). In this case the dynamic stiffness can become negative for high 

frequencies much as the value of k-mω2 would become negative for a single degree of 

freedom system. In attempting to define the effective damping for a rigid block placed on top 

of the foundation one should add the mass of soil to that of the block and consider the static 

stiffness instead of using a zero or negative stiffness.  For a foundation on the surface of a 

soil layer of finite depth (resting on much stiffer, nearly rigid rock) the real and imaginary 

parts of the stiffness will exhibit fluctuations associated with the natural frequencies of the 

layer.  For a soil without any internal damping the stiffness would become 0 at the soil 

natural frequency.  Below a threshold frequency (the fundamental frequency of the soil layer 

in shear for the horizontal case, the corresponding frequency in compression-dilatation for 

the vertical and rocking cases if Poisson’s ratio is 0.3 or less, and an intermediate frequency 

for higher Poisson’s ratios) there will be no radiation and the damping will be associated only 

with the internal, hysteretic, dissipation of energy in the soil.  Above the threshold frequency 

there will be radiation and the results will be similar to those of the half space except for their 

fluctuations.  The interpretation of what is the effective damping is more difficult for these 

cases.       

MEASUREMENT OF DAMPING 

Measurement of damping is carried out either through free vibration or forced vibration 

steady state tests.  Under free vibrations a system with linear viscous damping experiences an 

exponential decay in amplitude.  The natural logarithm of the ratio of the amplitude of a peak 

to that of the next one of the same sign would be then 2πβ/(1-β2)0.5 or approximately 2πβ for 

low values of damping.  The logarithm of the ratio of the amplitude of one positive peak to 
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that of the next negative one (or valley) would be half.  The logarithm of the ratio of the 

amplitude of a peak to that of the peak n cycles later would be n times this quantity.  If the 

damping is not of a linear viscous nature the ratio of the amplitudes of two consecutive peaks 

would not be constant.  In laboratory free decay tests it is common to observe a variation in 

this ratio and to take an average over various cycles.  Because these free vibrations take place 

at the natural frequency of the sample one could assume that the measured β can also be D. 

In laboratory steady state cyclic tests at a given frequency one can obtain the force 

deformation diagrams for each cycle and compute the energy dissipated (area of the 

hysteresis loop) and the equivalent secant stiffness (to compute the maximum strain energy).  

The damping ratio D can then be directly calculated.  This is what is normally done to 

determine for different soils the variation of the effective shear modulus and damping with 

the level of shear strains (and frequency in some cases).  An alternative is to determine 

experimentally the response of the sample to harmonic excitation with different frequencies, 

plotting the displacement amplitude (divided by the amplitude of the applied force) versus 

frequency.  This is the traditional amplification function for the response of a single degree of 

freedom system to a harmonic steady state excitation.  The peak in the response occurs at a 

frequency ω0 (1-2β2)0.5 or approximately ω0 (undamped natural frequency) for low values of 

damping.  Its value is 1/2β(1-β2)0.5.  The value of the amplification at the frequency ω0 would 

be exactly 1/2β.  It is common as a result to measure the amplitude of the peak U and to 

calculate the damping as 1/2U. Because the exact peak may be difficult to obtain an 

alternative is to use the half power bandwidth method (Clough and Penzien, 1993, Chopra, 

1995).  In this case calling ω2 and ω1 the frequencies at which the amplitude would be 
2

1  U 

the damping can be obtained approximately (again for low values of damping) as β= (ω2- 

ω1)/(ω2+ ω1). These expressions assume again linear viscous damping and a single degree of 

freedom system.  When dealing with experimental frequency response curves obtained in the 

field (either applying very small amplitude harmonic excitations, from records of ambient 

vibrations, or from records of response to actual earthquakes) it is common to use this 

approach to determine the effective damping in each mode.  It is common to assume that the 

first peak is only affected by the first mode, the second by the first 2 modes, and so on.  The 

fact that it is no longer a single degree of freedom system and that the damping is not 

primarily of a viscous nature make the reliability of the estimates somewhat questionable.  
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In SSI  problems if a rigid mass M resting on a mat foundation on the surface of an elastic 

halfspace is subjected to horizontal excitation, calling kreal and kimag the real and imaginary 

part of the foundation stiffness and c=kimag/ω based on the previous considerations,  the 

fraction of critical damping for the system  

kM
c

2
=β       (7) 

would be approximately constant if M is constant. On the other hand if M changed so as to 

change the natural frequency of the system with k=Mω0
2, β would increase linearly with the 

natural frequency and become 

                                                      β = cω0 /2k       (8)    

If the soil had some internal damping of a hysteretic nature β so defined would look like a 

hyperbola as a function of frequency with very large values at low frequencies.  It would be 

more logical then to separate first the hysteretic component (corresponding to the value of 

kimag at low frequencies divided by 2 k, then apply the above equation to the remaining c and 

add both results.  When dealing with vertical vibration and a soil with Poisson's ration of 0.4 

or more one should use the static value of the real stiffness and add to the rigid mass M the 

added mass of soil in order to estimate the damping (rather than dividing by a k that could 

become 0 or negative). 

When dealing with a soil layer of finite depth the interpretation of the damping becomes 

more difficult because of the fluctuations in the real and imaginary parts of the stiffness with 

frequency.  One could use the value of the variable k at each frequency or consider instead 

the static value and consider the difference between the static and the dynamic values an 

added mass of soil multiplied by the square of the frequency, adding it to the value of the 

rigid mass. 

 It is noted that other simple relationships have been developed to estimate system 

damping for SSI systems on the frequency by frequency basis involving structures with 

single degree of freedom such as those developed by Roesset (NUREG/CR 1780, 1980).  

However, the purpose of this paper is to develop a simple method to estimate the total system 

damping as it relates to the final dynamic structural responses (such as the acceleration 

response spectra at selected mass points).  Such responses obviously include the effects of 

material damping in the soil and structure, radiation damping of the foundation and the 
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combined modal effects of structural deformation as well as rigid body SSI motion.  As 

shown in this paper, a more reliable way to estimate the system damping would be to subject 

the system to  an impact load and study its free vibration and assess the damping from decay 

of the free vibration response. 

PARAMETRIC STUDY 

A total of five simple systems shown in Figure 1 have been analyzed.  The systems 

considered are as follows.  A single degree-of-freedom (SDOF) system consisting of a 

lumped mass and a spring as depicted by Case 1 in Figure 1 was analyzed.  The base of the 

model is fixed and has a fixed base natural frequency of 4 Hz.  The material damping used is 

of hysteretic type.  Damping values of 5, 10, 15, and 20% are considered.  For each material 

damping value, a fixed base SASSI analysis was performed and the transfer function of the 

response was obtained.  The SDOF of system was also subjected to an impulse load.  The 

impulse load has a unit amplitude and duration of 0.01 second, as shown in Figure 2.  The 

transfer functions of the SDOF system from harmonic seismic analyses and the impulse 

response functions due to impulse load are shown in Figures 3 and 4, respectively.  The 

transfer function is the amplitude of the total acceleration response of the mass point 

subjected to the harmonic input acceleration with amplitude of unity.  As expected, the peak 

of transfer function takes place at the natural frequency of the system and its amplitude is a 

function of the material damping used in the model.   The impulse response function is the 

displacement time history of the response of the mass point subjected to the impulse load.  

The rate of decay in the displacement response is a function of the material damping used in 

the model.  The half-bandwidth method and the peak of the transfer functions were used to 

back-calculate the system damping.  The impulse response functions from the impulse load 

were used in conjunction with the decay method to estimate the damping.  The summary of 

the results is shown in Table1.  As expected, for a SDOF with constant material damping, all 

methods predict accurate results close to the material damping used for the model. 
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Figure 1. Numerical Models Considered for Parametric Study 
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Figure 2. Impulse load to compute impulse response function 

 

Figure 3. Transfer function results for fixed base SDOF system 
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Figure 4. Impulse response for SDOF fixed base system 

 
Table 1.  Damping computed for fixed base SDOF system using 3 methods 
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harmonic load is applied to the foundation and from the real and imaginary parts of the 

displacement results k and c are computed for each frequency.  The results are shown in 

Figures 5 and 6. For Case 3 the stiffness and dashpot coefficients show a much larger 

frequency dependency than in Case 2, the uniform halfspace case.  Following the impedance 

analysis, each foundation model was modified by adding a single mass point at the center.  A 

total of 5 mass values were used in separate analyses.  The mass values were chosen to have 

the foundation undamped natural frequencies of 2, 4, 6, 8, and 10 Hz to cover a wide range of 

natural frequencies.  Each foundation system with the mass point described above was 

analyzed under harmonic seismic loading and was also subjected to the impulse loading 

shown in Figure 2.  The results of analyses in terms of absolute acceleration transfer 

functions for Cases 2 and 3 are shown in Figures 7 and 8, respectively. 
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Figure 5. Horizontal foundation stiffness for Cases 2 and 3 

Figure 6. Horizontal foundation dashpot coefficient for Cases 2 and 3 
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Figure 7. Transfer function amplitude for Case 2 (surface foundation on halfpace) 

 
Figure 8. Transfer function amplitude for Case 3 (surface foundation on H/R=3) 
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Figure 9. Impulse response functions for Case 2 (surface foundation on halfpace) 

Figure 10. Impulse response functions for Case 3 (surface foundation on H/R=3) 
 

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Time (second)

Im
pu

ls
e 

R
es

po
ns

e,
 U

2Hz Mass

4Hz Mass

6Hz Mass

8Hz Mass

10Hz Mass

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Time (second)

Im
pu

ls
e 

R
es

po
ns

e,
 U

2Hz Mass

4Hz Mass

6Hz Mass

8Hz Mass

10Hz Mass



 

17  

The impulse load analyses were performed for the same 5 values of mass points 

corresponding to the natural frequencies of 2, 4, 6, 8, and 10 Hz.  The estimate of the system 

damping for the SSI system for both Cases 2 and 3 are shown in Tables 2 and 3, respectively.  

As shown, the half-bandwidth method loses accuracy for higher natural frequencies and for 

Case 3 where foundation stiffness and damping show more frequency dependency than Case 

2.  This is to be expected since the half-bandwidth method is formulated for constant 

(frequency-independent) stiffness and damping conditions.  It also fails to work for the 

layered system where the transfer function is wide and the peak amplification is small (see 

Case 3 results for 8, and 10 Hz cases).  The method using the inverse of the peak also 

becomes less accurate for higher damping conditions.  However, using the damping ratio 

equation (Equation 1), the damping results tend to be closer to the decay method.  It should 

be noted that the damping ratio method requires the knowledge of the dashpot value at the 

natural frequency of the system.  This information is readily available for a SDOF system 

where only one natural frequency exists.  Estimating dashpot coefficients for a response that 

involves multi modes with the dashpot highly dependent on frequency of the vibration 

becomes much more difficult which reduces the accuracy of this method for real application.  

This point is illustrated in the results of the case study below. 

 

Table 2.  Damping computed for Case 2 (surface foundation on halfpace) 

 

 

 

 

Assigned Mass Frequency (Hz)
Approach 2.0 4.0 6.0 8.0 10.0

Half Band 10.5% 16.0% 23.4% 32.0% 41.4%
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Decay of Motion 10.3% 15.2% 21.3% 27.4% 30.7%
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Table 3.  Damping computed for Case 3 (surface foundation on H/R=3) 

 

 
Following the analysis of surface foundation, Cases 4 and 5 shown in Figure 1 for an 

embedded foundation were analyzed.  Similarly, Case 4 is a uniform halfspace case and the 

Case 5 is a layered site case.  The foundation stiffness and dashpot coefficients computed for 

a point at the bottom center of the foundation are compared in Figures 11 and 12.  As 

expected the stiffness and dashpot parameters show a very smooth variation with frequency 

for the halfspace case (Case 4).  Similar to the surface foundation, the models were modified 

and single mass points were added at bottom center of each foundation with 5 mass values to 

replicate undamped natural frequencies from 2 to 10 Hz.  Both models were analyzed for 

harmonic seismic input motion as well as the impulse load.  The transfer function results are 

shown in Figures13 and 14, respectively.  As shown in these figures, the peak of the transfer 

function for foundations with natural frequencies above 7 Hz is too small mainly due to high 

foundation radiation damping.  The amplitudes of the response for the layered-soil case (Case 

5) are generally higher than those of the uniform halfspace due to less radiation damping for 

the layered site (see Figure 12).   The results in term of impulse response functions are shown 

in Figures 15 and 16.   A summary of system damping values computed from the dynamic 

results is shown in Tables 4 and 5, respectively.  As shown in these tables, the estimated 

damping varies significantly from one method to other.  Variation is particularly more 

pronounced for the case of layered soil system.  The system damping estimated from the 

decay method appears to be more realistic even for the systems with high undamped natural 

Approach 2.0 4.0 6.0 8.0 10.0

Half Band 5.0% 5.1% 10.0% - -

1/(2*Umax) 5.1% 5.8% 15.7% 25.5% 27.2%

C/[2(km)0.5] 5.1% 5.9% 24.3% 33.5% 32.5%

Decay of Motion 5.1% 5.4% 18.1% 28.8% 39.6%

Assigned Mass Frequency (Hz)
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frequencies.  The accuracy of this method is verified for a real size structure on a layered soil 

site in the next section. 

 
Figure 11. Horizontal foundation stiffness for Cases 4 and 5 

Figure 12. Horizontal foundation dashpot coefficient for Cases 4 and 5 
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Figure 13. Transfer function amplitude for Case 4 (embedded foundation in halfpace) 

 
 
 

 
Figure 14. Transfer function amplitude for Case 5 (embedded foundation in layered soil) 
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Figure 15. Impulse response functions for Case 4 (embedded foundation in halfpace) 

Figure 16. Impulse response functions for Case 5 (embedded foundation in layered soil) 
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Table 4.  Damping computed for Case 4 (embedded foundation in halfpace) 

 

 

Table 5.  Damping computed for Case 5 (embedded foundation in layered soil) 

 

CASE STUDY 

In order to evaluate the effectiveness of the system damping obtained from the impulse 

load method, a dynamic model of a vitrification structure was analyzed.  The structure is a 

concrete shear wall building with a foundation dimension of 322 ft by 253 ft.  The major 

floors in the building are located at Elev. –21 (basetmat), .0, 13, 36, 57 and 86 ft.  The SASSI 

model of the building is shown in Figure 17.  Part of the building from ground surface (Elev. 

.0 ft) to the bottom of the foundation (Elev. –21 ft) was modeled by finite elements and the 

superstructure was modeled by a beam stick model.  This is modeled to include the 

 foundation Frequency (Hz) 
Approach 2.0 4.0 6.0 8.0 10.0 

Half Band 5.0% 5.1% 11.7% - - 

1/(2*Umax) 5.3% 6.8% 23.4% 37.1% 43.9% 

C/[2*(km) 0.5 ] 5.2% 6.3% 33.2% 61.5% 78.4% 

Decay of Motion 5.1% 4.9% 18.6% 25.7% 28.7% 

 
Foundation Frequency (Hz) 

Approach 2.0 4.0 6.0 8.0 10.0 

Half Band 16.5% 29.8% 61.8% - - 

1/(2*Umax) 15.2% 24.2% 33.3% 41.3% 46.7% 

C/[2*(km) 0.5 ] 15.6% 25.6% 37.3% 49.7% 62.3% 

Decay of Motion 15.6% 24.8% 35.6% 43.6% 45.2% 
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embedment effect on SSI responses.  However to simplify the analysis for this paper, the 

ground surface was lowered to Elev. –21 ft thus eliminating the foundation embedment.  The 

fundamental fixed base structural modal frequency of the building in the East-West direction 

is 12 Hz with 70% of the total mass.  The stick model is a 3D model and includes eccentricity 

of the shear and mass centers.  A detailed view of the 3D model is shown in Figure 18. 

 
 

 

 

 

Figure 17.  SASSI Hybrid model of the vitrification building  
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Figure 18.  Stick model of the vitrification building 

 
 
 

The site consists of very dense layers of sand and gravel with a total thickness of about 

300 ft underlain by rigid rock.  The strain-compatible shear wave velocity and damping 

values obtained from free-field SHAKE (Schnabel et al, 1972) analysis are shown in Figure 

19.  The soils material damping ranges from 2% to 4% depending on the depth of the soil 

layer. 
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Figure 19. Strain-compatible shear wave velocity and damping profiles 
 

To estimate the system damping first SASSI impedance analysis for the massless rigid 

foundation was performed and the stiffness and dashpot coefficients were obtained.  The 

results for horizontal translation in the East-West (X-direction in Figure 17) and rocking 

motion along the North-South axis are shown in Figures 20 and 21.  Since the length of the 

foundation (322 ft in the East-West direction) is about the same as the soil layer thickness 

(see Figure 19) both stiffness and dashpot parameters show significant variation with 

frequency. 
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Figure 20. Horizontal foundation (a) stiffness and (b) dashpot coefficients (case study) 
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Figure 21. Rocking foundation (a) stiffness and (b) dashpot coefficients (case study) 
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Following the impedance analysis, SSI analysis of the building was performed using 

SASSI.  The result in terms of amplitude of the total acceleration transfer function is shown 

in Figure 22.  As shown in this figure, the response is controlled by several modes of 

vibration as evident by the numerous peaks in the transfer function plot.  This is a typical 

response of a multi-story structure on a layered soil system.  The peak values are each 

associated with the foundation stiffness and dashpot that also change with frequency.  As 

shown in Figure 22, it is very difficult to select a particular peak response to use as a basis for 

obtaining the total system damping.  A wrong choice for the peak response amounts to an 

erroneous system damping.    

Figure 22. Transfer function amplitude of the node at Elevation 58 ft (SASSI) 

 

To estimate the system damping, the SASSI model (see Figure 17) was subjected to 

impulse load at all mass points in the model.  The time history of the impulse load is the same 
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the maximum acceleration responses of the mass points from seismic analysis of the model.  

The scale factors for impulse load for each of the mass points are shown in Figure 18.  The 

scale factors replicate the similar mode of vibration that is consistent with the maximum 

response of the mass point at Elev. 57 ft.  The impulse response function for the mass point at 

Elev. 57 ft is shown in Figure 23.  The response decays with a rate showing a system 

damping of nearly 20%. 

Figure 23. Impulse response function for the node at Elevation 58 ft (SASSI) 

 

To verify the accuracy of the system damping, the analysis of the structure was repeated 

using the GT-Strudl computer program (Georgia Tech.  2000).  The GT-Strudl model is a 
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shown in Figure 25.  The model was subjected to impulse load with the same time history 

and amplitude variation as used in the SASSI analysis.  The GT-Strudl analysis was 

performed in time domain using the time integration method.  The impulse response function 

at Elev. 57 ft is shown in Figure 26.  The decay rate amounts also to about 20% system 

damping.  This confirms the system damping by the SASSI solution is in good agreement 

with the damping obtained from the GT-Strudl solution as long as the foundation parameters 

are similar.   

 

Figure 24. GtStrudl Model with lumped spring and dashpot 

Figure 25. Rayleigh damping used in GtStrudl analysis 
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Figure 26. Impulse response function for the node at Elevation 58 ft (GtStrudl) 

 

To compare the seismic response of the structure, both models were analyzed using the 

acceleration time history of design motion as input.  The results in terms of acceleration 

response spectra at Elev. 57 ft are compared in Figure 27.  As shown in this figure, the input 

motion amplifies in the structure significantly yet a reasonably good agreement can be 

obtained between the two solutions.   

This case study also shows that by applying an impulse load on a SSI system and 

developing the impulse response function one can effectively obtain a realistic estimate of the 

total system damping. 
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Figure 27. Comparison of acceleration response spectra at Elevation 58 ft 

SUMMARY 

The simple methods currently available to estimate system damping from dynamic 

structural responses often fail to predict reasonable results for soil-structure systems due to 

frequency dependency of the foundation stiffness and dashpot parameters and the complex 

participation of the SSI and structural modes of vibration in the total response.  These 

methods include the half-bandwidth method, the inverse of the peak and the damping ratio 

method.  In this paper it has been shown that the response from an impulse load applied to 

the SSI model yields an accurate estimate of system damping while including the effects of 

material damping, radiation damping as well as composite effects of numerous structural and 

SSI modes to the dynamic response of the interest.  The damping computed may be used to 

evaluate SSI effects and for input for other types of analysis such as nonlinear time history 

analysis. 
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